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Lane-Level Localization Using an AVM Camera
for an Automated Driving Vehicle

in Urban Environments
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Abstract—This paper describes a lane-level localization
algorithm based on a map-matching method for application
to automated driving in urban environments. The lane-level
localization implies localizing the vehicle with centimeter-
level accuracy. In order to achieve a satisfactory level of
position accuracy with a low-cost GPS, a sensor fusion ap-
proach is essential for lane-level localization. The proposed
sensor fusion approach for the lane-level localization of a
vehicle uses an around view monitoring (AVM) module and
vehicle sensors. The proposed algorithm consists of three
parts: lane detection, position correction, and localization
filter. In order to detect lanes, a commercialized AVM mod-
ule is used. Since this module can acquire an image around
the vehicle, it is possible to obtain accurate position infor-
mation of the lanes. With this information, the vehicle po-
sition can be corrected by the iterative closest point (ICP)
algorithm. This algorithm estimates the rigid transformation
between the lane map and lanes obtained by AVM in real-
time. The vehicle position corrected by this transformation
is fused with the information of vehicle sensors based on an
extended Kalman filter. For higher accuracy, the covariance
of the ICP is estimated using Haralick’s method. The perfor-
mance of the proposed localization algorithm is verified via
vehicle tests on a proving ground. Test results show that
the proposed method can achieve localization centimeter-
level accuracy. The proposed algorithm will be useful in the
implementation of automated driving control.

Index Terms—Around view monitoring, automated vehi-
cle, extended Kalman filter-iterative closest point (EKF-ICP),
lane-level localization.
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I. INTRODUCTION

R ECENTLY, automated driving has been widely re-
garded as mainstream in the automotive industry since

it offers increased comfort and safety. Many motor vehicle
manufacturers aim to commercialize self-driving cars by 2020
and are spurring intelligent vehicle research to realize this.
Among these research activities, localization has emerged re-
cently as one of the hottest issues in the development of au-
tonomous vehicles. For vehicle navigation, accurate and robust
localization is required. Much research of vehicle localization
has been done over the last decade. A comprehensive overview
is given in [1]. Currently, there is much interest in the vehicle
localization based on high-definition map [2]–[4]. This is be-
cause the latest sensors and their processors still do not reach
a satisfying level of development in terms of robustness and
availability at various environments [5]. A digital map is built
that includes sufficient information to determine the current po-
sition of the autonomous vehicle relative to this map. Thus, the
digital map is used as a powerful additional sensor to improve
the performance of the vehicle localization.

In this paper, three research issues are considered in map-
aided vehicle localization: features for map-matching, method
of correcting the vehicle position, and a localization filter. The
digital maps used for localization can be mainly classified ac-
cording to features for map-matching. The most commonly used
feature is a lane marking. Lane markings are in standard use and
exist on almost all roads. Thus, many researches [2], [3], [6],
and [7] use lane marking data to build their digital map. The
second most used feature is a curb [2], [8]. Curbs usually appear
at the borders between streets and sidewalks. They are another
important feature to determine the drivable area. Besides these
two features, three-dimensional features [9], keypoints [10], vi-
sual features [11], and GPS shadow [12] are also considered to
generate the digital map for the map-aided localization. Based
on the works above, it is apparent that map with these features
enhances the performance of vehicle localization. However, fea-
tures other than lane markings still have problems with the stan-
dardization of the feature map. This is because lane markings
have a consistent appearance and are usually painted based on
rules given by the government. In contrast, other features have
many exceptions that make it difficult to build a large map. To
detect other features, high-cost sensors such as a stereo camera
[2] or a LiDAR [8]–[10] are required. So, in our study, we only
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use lane markings as features for map-matching and analyze the
performance of localization based on this feature.

To correct the vehicle position using a map and feature
data obtained by sensors in real-time, a map-matching algo-
rithm is needed. The most famous method of map-matching is
the iterative closest point (ICP) algorithm initially proposed in
[13]. Given two point clouds, the ICP algorithm estimates the
rigid transformation between them. The ICP algorithm sets up
correspondences between the source and the target point clouds.
Then, it finds a transformation that minimizes an error metric
function and transforms the source point cloud based on this
transformation. It iterates over these steps until the residual er-
ror between the source and the target point clouds is smaller than
a certain threshold. There are many variants of ICP [14]. Among
these variants of ICP, the point-to-plane approach is known to
be very accurate and fast [15], so we apply this approach to our
algorithm. In spite of an enormous amount of research effort
to improve the accuracy of ICP [16], these variants still can
result in inaccurate alignment due to the problems of noise and
outliers. It is therefore essential to fuse the vehicle position de-
rived from the map-matching algorithm with other sensors. To
implement it properly, a precise estimate of ICP’s covariance is
needed. The covariance estimator of minimization algorithms
such as ICP was initially proposed in [17], and has come to
be referred to as Haralick’s method [18]. Haralick’s method is
based on the Hessian of the cost function with respect to the
estimated displacement and the derivative of the Jacobian of the
cost function with respect to the measurements. In [19], this
method was adapted to ICP for the first time. In our study, we
adjust this method to apply to our matching algorithm.

There is a body of work in the field of localization filters
(nonlinear filter): mono-model approaches (EKF, UKF, DD1,
DD2: the first-order and second-order divided difference filter
[20]–[22]), multimodel [23], [24], and particle filter [25]. As a
result of improvements in estimation performance, the complex-
ity and computational load of developed localization filters are
increasing. Although estimation performance is an important
consideration for localization filters, there are other practical
issues related to the filter selection. One of the most important
practical considerations is the computational load of the filter,
especially for real-time applications. Based on both theoretical
and empirical analyses of a particular application, the extended
Kalman filter (EKF) is well known for its computational effi-
ciency compared to other nonlinear filters [26]. As long as the
process or measurement model is not strongly nonlinear, a non-
linear filtering algorithm is less likely to be useful [27]. Because
of this, our localization filter is designed based on an EKF.

There are two main differences between the proposed local-
ization approach and the previous works. The main difference
is sensor configuration to detect map-matching features. Con-
ventional researches use front cameras or LiDARs. These ap-
proaches have disadvantage in a heavy traffic situation because
its field of view (FOV) is disturbed by other vehicles. In order to
overcome this issue, an around view monitoring (AVM) camera
was used in our approach. This is described in more detail in
Section II-A. The other difference is consideration of an error
caused by mismatching. In previous work, the error variances
were only determined by sensors noises. By incorporating the

Fig. 1. Structure of vehicle localization.

error caused by mismatching as well as the sensor noise in the
proposed algorithm, the proposed localization performance is
more enhanced.

The remainder of this paper is organized as follows: Section
II gives an overview of our localization algorithm. Section III
describes the process of detecting the lane that is to be used based
on map-matching features. Section IV describes the method of
map-matching and estimation of ICP’s covariance. Section V
describes the lane-level localization solver based on an EKF.
Section VI includes results from a series of experiments using a
test vehicle in a proving ground. Finally, Section VII concludes
this paper.

II. LOCALIZATION SYSTEM OVERVIEW

A. Vehicle Localization Architecture

The vehicle localization is performed using three steps:
macro-level, road-level, and lane-level localization. These steps
are depicted in Fig. 1.

Macro-level localization has already been widely used to set
up car navigation systems based on low-cost GPS and proprio-
ceptive sensors. The accuracy of these systems is in the order of
10 m [28]. The objective of the road-level localization is to deter-
mine the lane in which the ego-vehicle is located on a multilane
road. The determined lane is used as the initial guess for the
lane-level localization. The key idea is to recognize surround-
ing vehicles and road boundaries by radar under the assumption
that the maximum number of lanes is known by the GPS and the
lane map information. The detailed description of road-level lo-
calization was presented in [29]. However, road-level accuracy
of localization is not enough to control the automated vehicle
on urban roads. The required precision for automated driving
is within a few centimeters [2], i.e., lane-level localization is
essential.

Three research issues are considered in lane-level localiza-
tion: lane detection using AVM, position correction based on
map-matching, and a localization filter. For the lane detection,
we use AVM cameras enabling one to obtain a top-view image
around the vehicle. There are four reasons for using an AVM
module for the lane-level localization. First, the top-view image
obtained by AVM enables direct calculation of the lateral off-
set without any model for lane tracking. The tracking models
may sometimes result in inaccurate lateral offset due to road
conditions, especially a road slope. Second, it is barely affected
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Fig. 2. Comparing front camera and AVM: left (heavy traffic condition)
and right (rainy condition).

by invisible lane images caused by neighboring vehicles even
in heavy traffic. As shown in Fig. 2, the lane markings may be
occluded by other vehicles in front when using the front camera.
However, there are few neighboring vehicles that invade AVM’s
FOV in the same situation.

Furthermore, the whole straight lane marking at the side can
be observed, which makes it easier and more robust to detect
the lane marking [42]. Third, AVM cameras are more robust
to weather and illumination conditions than front cameras, be-
cause AVM cameras are mounted toward the ground. Finally,
AVM cameras are pervasively used in driver assistance systems
in mid-class vehicles. For these reasons, we think that an AVM
camera is the most suitable sensor for lane-level localization.
However, AVM cannot be used alone due to its small FOV.
Thus, map-matching is required to localize the vehicle relative
to the digital map. For this, the ICP algorithm is used. The ICP
algorithm is widely used in spatial and geometric alignment.
In this paper, we applied the point-to-plane matching method
to correct the vehicle position. To solve the problem of false
matching, we estimate the covariance of the ICP algorithm and
set up a validation gate in the localization filter. Finally, the
localization filter is designed based on an EKF. The corrected
vehicle position obtained by map-matching is used as an obser-
vation inside a Kalman filter framework. The main contribution
of this paper is the application of existing techniques to develop
a low-cost system of lane-level localization and its experimental
validation. Detailed explanations of each algorithm are given in
the following sections.

B. Test Vehicle Configuration

Our test vehicle is equipped with close-to-production sensors
and a referencing system. We have a radar and two single-layer
LiDARs mounted on the front bumper. For lane detection, a
monocular vision system was mounted on the windshield and
AVM cameras were mounted on each side of the vehicle. A low-
cost GPS was also mounted for localization, as well as a RTK-
GPS receiver for the mobile mapping process and ground truth.
The RTK-DGPS is completely independent of the GPS input
to the system. The low-cost GPS and DGPS have accuracies of
about 2.5 and 0.02 m circular error probable, respectively. The
actuator module contains steering, throttle, and brake actuators.
These systems are interfaced using the control area network bus.
The command signals are transmitted digitally. The controller
consists of a computer and microautobox. The complete sensor,
actuator, and controller setup is shown in Fig. 3. To power this
equipment, an additional sub-battery is installed in the trunk

Fig. 3. Test vehicle configuration.

Fig. 4. Schematic diagram of the lane and stop line detection:
(a) grayscale image, (b) image after filtering, and (c) image after
thresholding.

space, and the sub-battery has a mechanism to be charged by
an alternator. Moreover, a 220-V, 2000-W inverter system is
also installed. For lane-level localization, we use proprioceptive
sensors (velocity, yaw-rate) and AVM cameras.

III. LANE DETECTION USING AN AVM CAMERA

For detecting the lane, we use a commercial AVM module
[41]. The advantage of the AVM has already been described in
Section II. This module is composed of four fish-eye cameras
mounted on each side of the vehicle. Usually, there are many
steps involved in the image processing of AVM cameras to ob-
tain the top-view image around the vehicle: camera calibration,
warping distortion rectification, view-point conversion, image
stitching, and so on [30]. However, a detailed description of
these processes is skipped here, because we use a commercial
AVM module that provides top-view images.

To improve the computational efficiency, regions of interest
(ROI) were set as shown on the left of Fig. 4. The ROI reduce
the searching area by assigning the line type (lane or stop line,
vertical or horizontal line) detected in each ROI.

The red- and orange-dashed boxes (A and B) in Fig. 4 in-
dicate the ROI in order to detect lanes and stop lines. Images
outside the ROI are not used due to the possibility of image
distortion. Then, each region’s images are filtered by a two-
dimensional Gaussian kernel [31]. The vertical direction of im-
age A and the horizontal direction of image B are smooth-
ing Gaussians, whose σy,A , σx,B are adjusted according to the
required height of the lane and stop lines to be detected

fv,A (yA ) = exp

(
− y2

A

2σ2
y ,A

)
(1)
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fh,B (xB ) = exp

(
− x2

B

2σ2
x,B

)
, (2)

where f is a Gaussian function for calculating the transfor-
mation to apply to each pixel in the image. x is the distance
from the origin in the horizontal axis and y is the distance from
the origin in the vertical axis. Subscripts A/B and x/y represent
images A and B and horizontal/vertical axis, respectively. The
horizontal direction of image A and the vertical direction of im-
age B are the second derivatives of Gaussians, whose σx,A , σy,B

are adjusted according to the expected width of the lanes and
stop lines

fh,A (xA ) =
1

σ2
x,A

exp

(
− x2

A

2σ2
x,A

)(
1 − x2

A

2σ2
x,A

)
(3)

fv,B (xB ) =
1

σ2
y ,B

exp

(
− y2

B

2σ2
y ,B

)(
1 − y2

B

2σ2
y ,B

)
. (4)

Each filter A and B is adjusted for vertical (lane) and hor-
izontal (stop line) bright lines of a specific width on a dark
background. Fig. 4(b) show the images filtered by these Gaus-
sian kernels. As shown in Fig. 4(b), areas where lanes or stop
lines exist have high response. These filters can also handle
quasi-vertical and quasi-horizontal lines, which produce con-
siderable output after the thresholding process. The thresh-
old value was determined by selecting the q% quantile value
from the filtered image. The filtered image was then binarized
by this threshold value. In this paper, q is set to 95%. Fig. 4(c)
shows the result after thresholding.

Next, the pixels exceeding the threshold value are reprojected
in the vehicle coordinate system. To find a polyline expression
that best approximates the lane data, the RANSAC (random
sample consensus) [32] algorithm was used. Lanes and stop
lines in the AVM images can be sufficiently represented by a
second-order polynomial. So, we use a second-order polyline
for expressing the line. Two thresholds are necessary for the
RANSAC algorithm; the first one indicates the expected outliers
rate in the points set, which is directly related to the iterations
number, and the second one specifies the distance above which
a point is considered an outlier. In this paper, we set the iter-
ations number and the threshold distance to determine outliers
to 50 and 0.05 m, respectively. The results of lane and stop line
detection are shown in Fig. 5. Red-dashed lines represent the
extracted lane marker and yellow solid lines represent the de-
tected stop lines. It can be seen that the various lane markers are
well extracted. Final outputs of the lane detection algorithm are
points of the lane approximated by a second-order polynomial.
These points are maintained at 10-cm intervals.

IV. POSITION CORRECTION

A. Map-Matching Based on ICP

Position correction can be achieved by matching the digital
map with the lane data obtained by AVM. The digital map used
for our approach has been presented in [35]. This map includes

Fig. 5. Result of various lines detection: (a) straight double and single
line, (b) dashed line and stop line, (c) merged line, (d) curved line, and
(e) curved and dashed line.

geo-localized lane markings. For real-time purposes, a limited
number of parameters must represent the map line segments.

As mentioned in Section I, we use a two-dimensional point-
to-plane ICP algorithm for map-matching. The point-to-plane
ICP was initially introduced by Chen and Medioni [36] and has
come into widespread use as a faster and more accurate variant
of standard ICP. This algorithm improves performance by using
surface normal information. In common with standard ICP, the
point-to-plane ICP algorithm finds the best transformation be-
tween two point clouds, iteratively repeating the following two
steps until the alignment error is smaller than a set threshold:

1) compute correspondences between the two point clouds;
2) compute a transformation which minimizes the error met-

ric function between corresponding points.
The only difference is the error metric function. Instead

of minimizing the Euclidean distance between corresponding
points, the point-to-plane algorithm minimizes error along the
surface normal. This error metric function can be written as

J =
N∑

i=1

||ηi · (R · pi + T − qi)||2 (5)

where pi = [pi,x , pi,y ]T and qi = [qi,x , qi,y ]T are the N corre-
spondences used in the iteration of ICP; and ηi is the surface
normal at qi . In our study, pi represents the points obtained by
the lane detection algorithm and qi represents the points of the
lane map with respect to ego-vehicle coordinates. R and T are
the rotation matrix and translation vector estimated by the ICP
algorithm. Because we deal with two-dimensional ICP in this
paper, R and T can be written as

R =

[
cos(r) − sin(r)

sin(r) cos(r)

]
, T =

[
tx

ty

]
(6)

where r, tx , ty are the matching result (amount of angle and
position correction). This result can be used to correct the vehicle
position. Let (XV ,Ψ) express the current vehicle position. The
corrected vehicle position (X∗

V ,Ψ∗) can be derived [37] as

X∗
V = RΨ · T + XV

Ψ∗ = r + Ψ

where RΨ =

[
cos(Ψ) −sin(Ψ)

sin(Ψ) cos(Ψ)

]
. (7)
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Fig. 6. Different shape of matching data: corridor (left) and U-shape
(right).

B. Matching Covariance Estimation

Although the ICP algorithm provides a very good estimate
for correcting the vehicle position, it does not consider its un-
certainty. Calculating the covariance of ICP is essential when
it has to be fused with other measurements in a stochastic lo-
calization framework. For estimating the ICP’s covariance, we
use Haralick’s method [17]. This method is summarized in the
following proposition.

Proposition 1: Let Z be the input/measurements and χ be
the output of an algorithm A that operates on minimizing an ob-
jective function J, i.e., χ∗ = A(Z) = argminχ J(Z,χ). Then,
the approximate value of the covariance of χ will be

cov (χ∗) ≈
(

∂2J

∂χ2

)−1
∂2J

∂Z∂χ
cov (Z)

∂2J

∂Z∂χ

T (
∂2J

∂χ2

)−1

.

(8)
In this paper, χ corresponds to the matching result(r, tx , ty )

and Z corresponds to the points pi obtained by the lane detection
algorithm and the points qi of the lane map. Thus, cov (Z) is to
be set in accordance with the noise of the AVM camera and the
lane map. The detailed equation for cov (χ∗) can be found in
[38].

Monte Carlo simulations were conducted to verify the per-
formance of Haralick’s method for different shapes of matching
data, as shown in Fig. 6. The true χ is fixed and a noise-corrupted
Z is created to reflect noise characteristics of an AVM and a
digital map. Using the noise-corrupted Z, our map-matching al-
gorithm estimates χ∗ and the true error of matching (χ∗ − χ) is
calculated. True error samples obtained by repeating the above
process 500 times are represented by blue dots in Fig. 7. Red
solid lines in Fig. 7 show the two-sigma bound of cov (χ∗) es-
timated by Haralick’s method. When the ICP uses the corridor
shape data, it can only correct the errors in x and Ψ, and not in
y. For this reason, the variance in y should theoretically be infi-
nite. The Haralick’s method captures this well and shows a large
uncertainty in y as shown in Fig. 7(a). In the case of matching
U-shape data, it can fully determine translation and rotation. It
can also be said that the uncertainty in x and y should be similar.

Fig. 7. Estimated standard deviation of matching error (red line) and
true error obtained by Monte Carlo simulation (blue dot): (a) X-Y error
(corridor shape matching), (b) X-Yaw error (corridor shape matching),
(c) X-Y error (U-shape matching), and (d) X-Yaw error (U-shape
matching).
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TABLE I
COMPARING STANDARD DEVIATION OF MAP-MATCHING

Corridor U-shape

Matching Shape Haralick True Haralick True

σx (m ) 0.026 0.039 0.027 0.023
σy (m ) 1.588 1.337 0.036 0.039
σΨ ( ◦ ) 0.296 0.271 0.294 0.258

Fig. 8. Prediction vehicle model.

This method also captures this well, as shown in Fig. 7(c). The
standard deviations obtained by the true error and Haralick’s
method are summarized below in Table I.

V. LOCALIZATION FILTER

In this section, we present the key stages of the localization
system. As show in Section IV-B, the result of map-matching
inevitably contains some errors, due to the shape of data used
for matching as well as the noise of sensors. In order to get
higher accuracy, the map-matching result should be fused with
proprioceptive sensor data [39]. The measurement of the vehicle
position calculated by ICP is used as an observation inside a
Kalman filter framework. We also set up a validation gate in the
localization filter to solve the problem of false matching.

A. Extended Kalman Filter

The ego-vehicle is described by means of a point position
(x, y) and orientation (Ψ) in the global coordinate system,
shown in Fig. 8.

The state vector is then given by

X = [x y Ψ]T . (9)

The basic framework for the EKF involves estimation of the
state of a discrete-time nonlinear dynamic system, shown below

Xk = f(Xk−1 ,Uk ) + wk

Zk = h(Xk−1) + vk (10)

where Uk is the known external input (velocity and yaw-rate)
and Zk is the corrected vehicle position by the map-matching
process. The process noise and measurement noise are given by
wk and vk , respectively. The measurement noise is estimated
by the method described in Section IV-B. The process noise is
associated with proprioceptive sensors. It is assumed to have

TABLE II
SPECIFICATION OF PROPRIOCEPTIVE SENSORS

Sensor Range Resolution Noise (RMS) Unit

Yaw rate ±120 0.0625 0.5 deg/s
Wheel speed 0−130 0.035 0.3 m/s

zero mean and a Gaussian distribution. The specifications of the
proprioceptive sensors are given in Table II.

By integrating using the Euler approximation and assuming
that the control signals, the velocity and yaw-rate are approx-
imately constant over the sample period, the nominal discrete
process model equations can be written as

X̄k |k−1 =

⎡
⎢⎢⎣

x̂k−1|k−1 + vk · Δt · cos(Ψ̂k−1|k−1 + � t · Ψ̇k )

ŷk−1|k−1 + vk · Δt · sin(Ψ̂k−1|k−1 + � t · Ψ̇k )

Ψ̂k−1|k−1 + Δt · Ψ̇k

⎤
⎥⎥⎦
(11)

where x̂k−1|k−1 , ŷk−1|k−1 , Ψ̂k−1|k−1 are estimated states from
the previous time step, and k is the time index of the discrete
model. The covariance of the predicted state is described as

Pk |k−1 = FkPk−1|k−1Fk + GkQGk

where Fk =
∂f

∂x

∣∣∣X̂k −1 |k −1 ,uk
, Gk =

∂f

∂u

∣∣∣X̂k −1 |k −1 ,uk , (12)

where Q describes the covariance matrix related to the proprio-
ceptive sensor’s noise.

Vehicle positions are corrected by a measurement update of
the EKF as follows:

X̂k |k = X̄k |k−1 + Kk · (Zk − H · X̄k |k−1
)

Kk = Pk |k−1H
T · S−1

k

Sk = HPk |k−1H
T + Rk

where H =

⎡
⎢⎣

1 0 0

0 1 0

0 0 1

⎤
⎥⎦ (13)

where Rk describes the covariance matrix of the measurement.
The covariance of the estimated state is described as

Pk |k = (I − kkH) · Pk |k−1 . (14)

The rate of time and measurement update is 10 Hz.

B. Validation Gate

A validation gate is set up to prevent fusing the result of
false matching. The validation gate represents a threshold that
is associated with the acceptability of the measurements. Only
measurements inside of the validation gate are used to update
the filter [40]. The validation gate can be obtained as follows:

e2 = (Zk − HX̄k |k−1 )T S−1
k (Zk − HX̄k |k−1 )

Vk =
{
Z : e2 < g2} , (15)

where g2 is chosen as a confidence level. A confidence level
is generally chosen between 1 and 3. In this paper, we set this
value to 3. A three-sigma gate is commonly used, ensuring that
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Fig. 9. Detailed trajectory and travel time of two typical scenarios.

Fig. 10. Localization result of first scenario: (a) lateral position error,
(b) longitudinal position error, (c) Yaw angle error, and (d) map-matching
history.

Fig. 11. Localization result of second scenario: (a) lateral position error,
(b) longitudinal position error, (c) Yaw angle error, and (d) map-matching
history.

the measurement will fall in the gate with a probability of 0.998
under the Gaussian assumption. The normalized error e2 varies
as a Chi-squared distribution with the number of measurement
degrees of freedom

VI. TEST RESULTS

In order to validate the proposed algorithm, tests have been
carried out at the Korea Automobile Testing and Research In-
stitute proving ground. The test track replicates a real urban
environment that includes intersecting streets, pedestrian cross-
walks, and traffic signals as shown in Fig. 9. Since the lane-level
map was generated using RTK-DGPS, the accuracy of the digi-
tal road map in an absolute coordinate system was in the order of
centimeters. For real-time implementation, a lane-level localiza-
tion algorithm was built with the LabVIEW software installed
on the computer. A test driver manually drove the test vehicle
along 15 different trajectories. In keeping with general urban
driving conditions, the speed and acceleration of the test vehicle
were restricted to 60 km/h and 2 m/s2. The total distance and
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Fig. 12. Operation of map-matching according to the driving maneuvers.

driving time of the tests were about 16.1 km and 32 min, re-
spectively. All datasets have in common that ground truth data
are obtained by RTK-DGPS.

Figs. 10 and 11 represent the result of two typical test sce-
narios. The first scenario is lane keeping in the various en-
vironments such as intersection, crosswalk, roundabout, and
merging/splitting roads. The second scenario is consecutive lane
changing. Most previous works validated their localization al-
gorithm only under the lane keeping condition. However, lane
changes occur frequently on urban roads. Therefore, it is nec-
essary to validate the proposed algorithm under the lane change
condition. Through the results of the two tests, we can verify
that the proposed localization algorithm is suitable for auto-
mated driving in urban environments. The detailed trajectory
and travel time of the two tests are represented in Fig. 9.

Figs. 10 and 11(a), (b), and (c) show changes of localization
errors with respect to the vehicle coordinates. To show how the
filter is well tuned, ±3σ bounds are plotted as red-dashed lines.
In both cases, the lateral error is smaller than the longitudinal
error because the most frequently used shape for map-matching
is a corridor shape. Figs. 10 and 11(d) represent the history of
shapes used to matching the map. As mentioned in Section IV-B,
the covariance of map-matching in the longitudinal direction is
much larger than that in the lateral direction in the case of
corridor shape matching. The confidence of the lateral position
is much higher than that of the longitudinal position in the
overall tests.

Actually, the longitudinal error is not important to control
an automated vehicle for keeping the lane on small-curvature
roads. However, for roads with large curvature (especially, in
intersections), the longitudinal error should be decreased to
the same level as that of the lateral error. In most cases, there
are stop lines or merge lines that enable a U-shape matching be-
fore entering a road with large curvature. The longitudinal error
and variance significantly decrease whenever a U-shape match-
ing occurs. Thus, it can be said that the proposed algorithm has
a sufficient localization performance to control an automated

Fig. 13. Localization result of second scenario (dataset 4).

vehicle on the proving ground. Fig. 13 shows the situations
where U-shape matchings occurred during the first scenario.

The lateral error of the second scenario is slightly bigger than
that of the first. This is caused by the lack of visual measurement
updates. Since an AVM camera has a small FOV, lane data
used for map-matching are not sufficient when the test vehicle
changes lane. This is depicted in Fig. 12. However, in spite
of consecutive lane changing, the mean errors of the lateral
direction are also small (less than 20 cm) enough to control the
automated vehicle.

Fig. 14 shows the histogram of the measurement residuals
over all datasets. The medians of the lateral position and yaw
error are, respectively, less than 20 cm and 1°. The mean errors in
the longitudinal direction are much larger than that in the lateral.
However, as mentioned earlier, the longitudinal position error
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Fig. 14. Histogram of local longitudinal/lateral position and yaw angle
error of total data: (a) lateral error distribution, (b) lateral error distribution,
and (c) lateral error distribution.

decreases to the same level as that of the lateral error before
entering a road with large curvature. So, it does not matter
to the control of the automated vehicle. From these results, it
was confirmed that our localization method has applicability to
automated driving in an urban environment.

We compared our algorithm with another localization method
based on the front camera [3]. Table III gives performance

TABLE III
ERROR STATICS

Lateral PE (m) Longitudinal PE (m)

I II I II

mean 0.26 0.072 0.39 0.26
std. dev 0.34 0.067 0.39 0.23

(PE: positioning error; I: front camera-based local-
ization; II: AVM-based localization).

metrics of both localization methods. Since the two results were
not obtained under the same conditions, the results cannot be
compared directly. Even then, it is obvious that lateral accu-
racy is significantly improved by the proposed algorithm. The
major factor that brings about these results is the AVM’s charac-
teristics mentioned in Section II-B. AVM images enable direct
calculation of the lateral offset and make it possible to improve
the lateral accuracy through map-matching.

VII. CONCLUSION

A novel method for lane-level localization using AVM cam-
eras with a lane map for application to automated driving has
been presented. The proposed algorithm consists of three parts:
lane detection, position correction, and localization filter. In lane
detection, a well-known lane detection algorithm is adapted to
be applicable to the commercial AVM module. To correct the
vehicle position using detected lane and a digital map, an ICP-
based map-matching algorithm is used, and an EKF is applied
to fuse the map-matching result with the vehicle sensors’ data.
In order to improve the reliability of the proposed localiza-
tion algorithm, a covariance estimator for ICP and a validation
gate are designed in the localization filter. The lane-level local-
ization algorithm has been successfully implemented on a test
vehicle. Tests have been conducted on a proving ground. Vehicle
test results have revealed that a precision within a few centime-
ters can be achieved, which is sufficient for automated vehicle
control. However, there still remain challenging driving situa-
tions in terms of lane-level localization on urban roads. Such
situations include low-visibility conditions of the lane, lack of
longitudinal position correction over a long period, increasing
nonlinearity due to unusual maneuvering, and so on. Enhancing
and verifying the proposed algorithm to achieve good accuracy
for automated vehicle control in challenging driving situations
on urban roads are the topics of our future research.
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